
Curriculum for

Certified Professional for
Software Architecture (CPSA)®

Foundation Level
2021.1-EN-20220413

Table of Contents

Legal Notice . 1

List of Learning Goals . 2

Introduction . 4

What does a Foundation Level training convey? . 4

Out of scope . 5

Prerequisites. 6

Structure, duration and teaching methods . 7

Learning goals and relevance for the examination . 8

Current version and public repository . 8

1. Basic concepts of software architecture . 9

Relevant terms . 9

Learning goals . 9

References . 12

2. Design and development of software architectures. 13

Relevant terms . 13

Learning goals . 13

References . 18

3. Specification and communication of software architectures . 20

Relevant terms . 20

Learning goals . 20

References . 22

4. Software architecture and quality . 23

Relevant terms . 23

Learning goals . 23

References . 24

5. Examples of software architectures. 25

Learning goals . 25

References . 26

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) ii

Legal Notice

© (Copyright), International Software Architecture Qualification Board e. V. (iSAQB® e. V.) 2021

The curriculum may only be used subject to the following conditions:

1. You wish to obtain the CPSA Certified Professional for Software Architecture Foundation Level®

certificate. For the purpose of obtaining the certificate, it shall be permitted to use these text

documents and/or curricula by creating working copies for your own computer. If any other use of

documents and/or curricula is intended, for instance for their dissemination to third parties, for

advertising etc., please write to info@isaqb.org to enquire whether this is permitted. A separate

license agreement would then have to be entered into.

2. If you are a trainer or training provider, it shall be possible for you to use the documents and/or

curricula once you have obtained a usage license. Please address any enquiries to info@isaqb.org.

License agreements with comprehensive provisions for all aspects exist.

3. If you fall neither into category 1 nor category 2, but would like to use these documents and/or

curricula nonetheless, please also contact the iSAQB e. V. by writing to info@isaqb.org. You will then

be informed about the possibility of acquiring relevant licenses through existing license agreements,

allowing you to obtain your desired usage authorizations.

Important Notice

We stress that, as a matter of principle, this curriculum is protected by copyright. The

International Software Architecture Qualification Board e. V. (iSAQB® e. V.) has exclusive

entitlement to these copyrights.

The abbreviation "e. V." is part of the iSAQB’s official name and stands for "eingetragener Verein"

(registered association), which describes its status as a legal entity according to German law. For the

purpose of simplicity, iSAQB e. V. shall hereafter be referred to as iSAQB without the use of said

abbreviation.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 1

mailto:info@isaqb.org
mailto:info@isaqb.org
mailto:info@isaqb.org

List of Learning Goals

• LG 1-1: Discuss definitions of software architecture (R1)

• LG 1-2: Understand and explain the goals and benefits of software architecture (R1)

• LG 1-3: Understand software architecture as part of the software lifecycle (R2)

• LG 1-4: Understand software architects' tasks and responsibilities (R1)

• LG 1-5: Relate the role of software architects to other stakeholders (R1)

• LG 1-6: Can explain the correlation between development approaches and software architecture (R1)

• LG 1-7: Differentiate between short- and long-term goals (R1)

• LG 1-8: Distinguish explicit statements and implicit assumptions (R1)

• LG 1-9: Responsibilities of software architects within the greater architectural context (R3)

• LG 1-10: Differentiate types of IT systems (R3)

• LG 1-11: Challenges of distributed systems (R3)

• LG 2-1: Select and use approaches and heuristics for architecture development (R1,R3)

• LG 2-2: Design software architectures (R1)

• LG 2-3: Identify and consider factors influencing software architecture (R1-R3)

• LG 2-4: Design and implement cross-cutting concepts (R1)

• LG 2-5: Describe, explain and appropriately apply important solution patterns (R1, R3)

• LG 2-6: Explain and use design principles (R1-R3)

• LG 2-7: Manage dependencies between building blocks (R1)

• LG 2-8: Achieve quality requirements with appropriate approaches and techniques (R1)

• LG 2-9: Design and define interfaces (R1-R3)

• LG 3-1: Explain and consider the quality of technical documentation (R1)

• LG 3-2: Describe and communicate software architectures (R1,R3)

• LG 3-3: Explain and apply notations/models to describe software architecture (R2-R3)

• LG 3-4: Explain and use architectural views (R1)

• LG 3-5: Explain and apply context view of systems (R1)

• LG 3-6: Document and communicate cross-cutting concepts (R2)

• LG 3-7: Describe interfaces (R1)

• LG 3-8: Explain and document architectural decisions (R1-R2)

• LG 3-9: Use documentation as written communication (R2)

• LG 3-10: Know additional resources and tools for documentation (R3)

• LG 4-1: Discuss quality models and quality characteristics (R1)

• LG 4-2: Clarify quality requirements for software architectures (R1)

• LG 4-3: Qualitative analysis and assessment of software architectures (R2-R3)

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 2

• LG 4-4: Quantitative evaluation of software architectures (R2)

• LG 5-1: Know the relation between requirements, constraints, and solutions (R3)

• LG 5-2: Know the rationale of a solution’s technical implementation (R3)

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 3

Introduction

What does a Foundation Level training convey?

Licensed Certified Professional for Software Architecture – Foundation Level (CPSA-F) trainings will

provide participants with the knowledge and skills required to design, specify and document a software

architecture adequate to fulfil the respective requirements for small and medium-sized systems. Based

upon their individual practical experience and existing skills participants will learn to derive architectural

decisions from an existing system vision and adequately detailed requirements. CPSA-F trainings teach

methods and principles for design, documentation and evaluation of software architectures, independent

of specific development processes.

Focus is education and training of the following skills:

• Discuss and reconcile fundamental architectural decisions with stakeholders from requirements,

management, development, operations and test

• understand the essential activities of software architecture, and carry out those for small- to medium

sized systems

• document and communicate software architectures based upon architectural views, architecture

patterns and technical concepts.

In addition, such trainings cover:

• the term software architecture and its meaning

• the tasks and responsibilities of software architects

• the roles of software architects within development projects

• state-of-the-art methods and techniques for developing software architectures.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 4

Out of scope

This curriculum reflects the contents currently considered by the iSAQB members to be necessary and

useful for achieving the learning goals of CPSA-F. It is not a comprehensive description of the entire

domain of 'software architecture'.

The following topics or concepts are not part of CPSA-F:

• Specific implementation technologies, frameworks or libraries

• Programming or programming languages

• Specific process models

• Fundamentals of modelling notations (such as UML) or fundamentals of modelling itself

• System analysis and requirements engineering (please refer to the education and certification

program by IREB e. V., https://ireb.org, International Requirements Engineering Board)

• Software testing (please refer to the education and certification program by ISTQB e.V.,

https://istqb.org, International Software Testing Qualification Board)

• Project or product management

• Introduction to specific software tools.

The aim of the training is to provide the basics for acquiring the advanced
knowledge and skills required for the respective application.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 5

https://ireb.org
https://istqb.org

Prerequisites

The iSAQB e. V. may check the following prerequisites in certification examinations via corresponding

questions.

Participants should have the following knowledge and/or experience. In particular, substantial practical

experience from software development in a team is an important prerequisite for understanding the

learning material and successful certification.

• More than 18 months of practical experience with software development, gained through team-based

development of several systems outside of formal education

• Knowledge of and practical experience with at least one higher programming language, especially:

◦ Concepts of

▪ modularization (packages, namespaces, etc.)

▪ parameter-passing (call-by-value, call-by-reference)

▪ scope, i.e. of type- and variable declaration and definition

◦ Basics of type systems (static vs. dynamic typing, generic data types)

◦ Error- and exception handling in software

◦ Potential problems of global state and global variables

• Basic knowledge of:

◦ modelling and abstraction

◦ algorithms and data structures (i.e. Lists, Trees, HashTable, Dictionary, Map)

◦ UML (class, package, component and sequence diagrams) and their relation to source code

Furthermore, the following will be useful for understanding several concepts:

• Basics and differences of imperative, declarative, object-oriented and functional programming

• Practical experience in

◦ a higher level programming language

◦ designing and implementing distributed applications, such as client-server systems or web

applications

◦ technical documentation, especially documenting source code, system design or technical

concepts

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 6

Structure, duration and teaching methods

Study times given in the following sections of the curriculum are just recommendations. The duration of a

training course should be at least three days, but may as well be longer. Providers may vary in their

approach to duration, teaching methods, the type and structure of exercises as well as the detailed course

outline. The types (domains and technologies) of examples and exercises can be determined individually

by training providers.

Content Recommended Duration (min)

1. Basic Concepts of Software Architecture 120

2. Design and Development 420

3. Specification and Communication 240

4. Software Architecture and Quality 120

5. Examples 90

Total 990

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 7

Learning goals and relevance for the examination

The structure of the curriculum’s chapters follows a set of prioritized learning goals. For each learning

goal, relevance for the examination of this learning goal or its sub-elements is clearly stated (by the R1, R2,

R3 classification, see the table below). Every learning goal describes the contents to be taught including

their key terms and concepts.

Regarding relevance for the examination, the following categories are used in this curriculum:

ID Learning-goal

category

Meaning Relevance for

examination

R1 Being able to These are the contents participants will be expected to

be able to put into practice independently upon

completion of the course. Within the course, these

contents will be covered through exercises and

discussions.

Contents will be

part of the

examination.

R2 Understanding These are the contents participants are expected to

understand in principle. They will normally not be the

primary focus of exercises in training.

Contents may

be part of the

examination.

R3 Knowing These contents (terms, concepts, methods, practices

or similar) can enhance understanding and motivate

the topic. They may be covered in training if required.

Contents will

not be part of

examination.

If required, the learning goals include references to further reading, standards or other sources. The

sections "Terms and Concepts" of each chapter list words that are associated with the contents of the

chapter. Some of them are used in the descriptions of learning goals.

Current version and public repository

You find the most current version of this document on the official download page on https://isaqb-

org.github.io/.

The document is maintained in a public repository at https://github.com/isaqb-org/curriculum-foundation,

all changes and modifications are public.

Please report any issues in our public issue tracker on https://github.com/isaqb-org/curriculum-

foundation/issues.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 8

https://isaqb-org.github.io/curriculum-foundation/
https://isaqb-org.github.io/
https://isaqb-org.github.io/
https://github.com/isaqb-org/curriculum-foundation
https://github.com/isaqb-org/curriculum-foundation
https://github.com/isaqb-org/curriculum-foundation/issues
https://github.com/isaqb-org/curriculum-foundation/issues
https://github.com/isaqb-org/curriculum-foundation/issues

1. Basic concepts of software architecture

Duration: 120 min. Exercises: none

Relevant terms

Software architecture; architecture domains; structure; building blocks; components; interfaces;

relationships; cross-cutting-concepts; software architects and their responsibilities; tasks and required

skills; stakeholders and their concerns; functional and quality requirements of systems; constraints;

influencing factors; types of IT systems (embedded systems; real-time systems; information systems etc.)

Learning goals

LG 1-1: Discuss definitions of software architecture (R1)

Software architects know several definitions of software architecture (incl. ISO 42010/IEEE 1471, SEI,

Booch etc.) and can name their similarities:

• Components/building blocks with interfaces and relationships

• Building blocks as a general term, components as a special form thereof

• Structures, cross-cutting concepts, principles

• Architecture decisions and their consequences on the entire systems and its lifecycle

LG 1-2: Understand and explain the goals and benefits of software architecture (R1)

Software architects can justify the following essential goals and benefits of software architecture:

• support the design, implementation, maintenance, and operation of systems

• achieve quality requirements such as reliability, maintainability, changeability, security, etc.

• achieve functional requirements or ensure that they can be met

• ensure that the the system’s structures and concepts are understood by all relevant stakeholders

• systematically reduce complexity

• specify architecturally relevant guidelines for implementation and operation

LG 1-3: Understand software architecture as part of the software lifecycle (R2)

Software architects understand their tasks and can integrate their results into the overall lifecycle of IT

systems. They can:

• identify the consequences of changes in functional requirements, quality requirements, technologies,

or the system environment in relation to software architecture

• elaborate on relationships between IT-systems and the supported business and operational

processes

LG 1-4: Understand software architects' tasks and responsibilities (R1)

Software architects are responsible for achieving the required or necessary quality and creating the

architecture design of a solution. Depending on the actual approach or process model used, they must

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 9

https://leanpub.com/isaqbglossary/read#term-software-architecture
https://leanpub.com/isaqbglossary/read#term-structure
https://leanpub.com/isaqbglossary/read#term-building-block
https://leanpub.com/isaqbglossary/read#term-component
https://leanpub.com/isaqbglossary/read#term-interface
https://leanpub.com/isaqbglossary/read#term-relationship
https://leanpub.com/isaqbglossary/read#term-cross-cutting-concepts
https://leanpub.com/isaqbglossary/read#term-quality-requirement
https://leanpub.com/isaqbglossary/read#term-constraints

align this responsibility with the overall responsibilities of project management and/or other roles.

Tasks and responsibilities of software architects:

• clarify and scrutinize requirements and constraints, and refine them if necessary Together with

functional requirements (required features), this includes the required quality characteristics (required

constraints)

• decide how to decompose the system into building blocks, while determining dependencies and

interfaces between the building blocks

• determine and decide on cross-cutting concepts (for instance persistence, communication, GUI etc.)

• communicate and document software architecture based on views, architectural patterns, cross-

cutting and technical concepts

• accompany the realization and implementation of the architecture; integrate feedback from relevant

stakeholders into the architecture if necessary; review and ensure the consistency of source code and

software architecture

• analyze and evaluate software architecture, especially with respect to risks involving the quality

requirements

• identify, highlight, and justify the consequences of architectural decisions to other stakeholders

They should independently recognize the necessity of iterations in all tasks and point out possibilities for

appropriate and relevant feedback.

LG 1-5: Relate the role of software architects to other stakeholders (R1)

Software architects are able to explain their role. They should adapt their contribution to a software

development in a specific context and in relation to other stakeholders and organizational units, in

particular to:

• product management and product owners

• project managers

• requirement engineers (requirements- or business analysts, requirements managers, system analysts,

business owners, subject-matter experts, etc.)

• developers

• quality assurance and testers

• IT operators and administrators (applies primarily to production environment or data centers for

information systems),

• hardware developers

• enterprise architects and architecture board members

LG 1-6: Can explain the correlation between development approaches and software architecture
(R1)

• Software architects are able to explain the influence of iterative approaches on architectural decisions

(with regard to risks and predictability).

• Due to inherent uncertainty, software architects often have to work and make decisions iteratively. To

do so, they have to systematically obtain feedback from other stakeholders.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 10

LG 1-7: Differentiate between short- and long-term goals (R1)

Software architects can:

• explain long-term quality requirements and their differentiation from (short-term) project goals

• explain potential conflicts between short-term and long-term goals, in order to find a suitable solution

for all stakeholders

• identify and specify quality requirements

LG 1-8: Distinguish explicit statements and implicit assumptions (R1)

Software architects:

• should explicitly present assumptions or prerequisites, therefore avoiding implicit assumptions

• know that implicit assumptions can lead to potential misunderstandings between stakeholders

• can formulate implicitly, if it is appropriate in the given context

LG 1-9: Responsibilities of software architects within the greater architectural context (R3)

The focus of the iSAQB CPSA Foundation Level is on structures and concepts of individual software

systems.

In addition, software architects are familiar with other architectural domains, for example:

• enterprise IT architecture: Structure of application landscapes

• business and process architecture: Structure of, among other things, business processes

• information architecture: cross-system structure and use of information and data

• infrastructure or technology architecture: Structure of the technical infrastructure, hardware, networks,

etc.

• hardware or processor architecture (for hardware-related systems)

These architectural domains are not the content focus of CPSA-F.

LG 1-10: Differentiate types of IT systems (R3)

Software architects know different types of IT systems, for example:

• information systems

• decision support, data warehouse or business intelligence systems

• mobile systems

• batch processes or systems

• hardware-related systems; here they understand the necessity of hardware/software code design

(temporal and content-related dependencies of hardware and software design)

LG 1-11: Challenges of distributed systems (R3)

Software architects are able to:

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 11

• identify distribution in a given software architecture

• analyze consistency criteria for a given business problem

• explain causality of events in a distributed system

Software architects know:

• communication may fail in a distributed system

• limitations regarding consistency in real-world databases

• what the "split-brain" problem is and why it is difficult

• that it is impossible to determine the temporal order of events in a distributed system

References

[Bass+ 2012], [Gharbi+2020], [iSAQB References], [Starke 2020], [vanSteen+Tanenbaum]

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 12

2. Design and development of software architectures

Duration: 330 min. Excercises: 90 min.

Relevant terms

Design; design approach; design decision; views; interfaces; technical and cross-cutting concepts;

architectural patterns; pattern languages; design principles; dependencies; coupling; cohesion; functional

and technical architectures; top-down and bottom-up approaches; model-based design;

iterative/incremental design; domain-driven design

Learning goals

LG 2-1: Select and use approaches and heuristics for architecture development (R1,R3)

Software architects are able to name, explain, and use fundamental approaches of architecture

development, for example:

• top-down and bottom-up approaches to design (R1)

• view-based architecture development (R1)

• iterative and incremental design (R1)

◦ necessity of iterations, especially when decision-making is affected by uncertainties (R1)

◦ necessity of feedback on design decisions (R1)

• domain-driven design, see [Evans 2004] (R3)

• evolutionary architecture, see [Ford 2017] (R3)

• global analysis, see [Hofmeister et. al 1999] (R3)

• model-driven architecture (R3)

LG 2-2: Design software architectures (R1)

Software architects are able to:

• design and appropriately communicate and document software architectures based upon known

functional and quality requirements for software systems that are neither safety- nor business-critical

• make structure-relevant decisions regarding system decomposition and building-block structure and

deliberately design dependencies between building blocks

• recognize and justify interdependencies and trade-offs of design decisions

• explain the terms black box and white box and apply them purposefully

• apply stepwise refinement and specify building blocks

• design architecture views, especially building-block view, runtime view and deployment view

• explain the consequences of these decisions on the corresponding source code

• separate technical and domain-related elements of architectures and justify these decisions

• identify risks related to architecture decisions.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 13

https://leanpub.com/isaqbglossary/read#term-interface
https://leanpub.com/isaqbglossary/read#term-cross-cutting-concepts

LG 2-3: Identify and consider factors influencing software architecture (R1-R3)

Software architects are able to gather and consider constraints and influencing factors that restrict their

decisions. They understand that their decisions may imply further requirements and constraints on the

system being designed, its architecture, or the development process. (R1-R2)

They should recognize and account for the impact of:

• product-related factors such as (R1)

◦ functional requirements

◦ quality requirements and quality goals

◦ additional factors such as product cost, intended licensing model, or business model of the

system

• technological factors such as (R1-R3)

◦ externally mandated technical decisions and concepts (R1)

◦ existing or planned hardware and software infrastructure (R1)

◦ technological constraints on data structures and interfaces (R2)

◦ reference architectures, libraries, components, and frameworks (R1)

◦ programming languages (R3)

• organizational factors such as

◦ organizational structure of the development team and of the customer (R1)

◦ company and team cultures (R3)

◦ partnerships and cooperation agreements (R2)

◦ standards, guidelines, and process models (e.g. approval and release processes) (R2)

◦ available resources like budget, time, and staff (R1)

◦ availability, skill set, and commitment of staff (R1)

• regulatory factors such as (R2)

◦ local and international legal constraints

◦ contract and liability issues

◦ data protection and privacy laws

◦ compliance issues or obligations to provide burden of proof

• trends such as (R3)

◦ market trends

◦ technology trends (e.g. blockchain, microservices)

◦ methodology trends (e.g. agile)

◦ (potential) impact of further stakeholder concerns and mandated design decisions (R3)

Software architects are able to describe how those factors can influence design decisions and can

elaborate on the consequences of changing influencing factors by providing examples for some of them

(R2).

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 14

LG 2-4: Design and implement cross-cutting concepts (R1)

Software architects are able to:

• explain the significance of such cross-cutting concepts

• decide on and design cross-cutting concepts, for example persistence, communication, GUI, error

handling, concurrency

• identify and assess potential interdependencies between these decisions.

Software architects know that such cross-cutting concepts may be re-used throughout the system.

LG 2-5: Describe, explain and appropriately apply important solution patterns (R1, R3)

Software architects know:

• various architectural patterns and can apply them when appropriate

• that patterns are a way to achieve certain qualities for given problems and requirements within given

contexts

• that various categories of patterns exist (R3)

• additional sources for patterns related to their specific technical or application domain (R3)

Software architects can explain and provide examples for the following patterns (R1):

• Layers:

◦ Abstraction layers hide details, example: ISO/OSI network layers, or "hardware abstraction layer".

See https://en.wikipedia.org/wiki/Hardware_abstraction

◦ Another interpretation are Layers to (physically) separate functionality or responsibility, see

https://en.wikipedia.org/wiki/Multitier_architecture

• Pipes-and-Filter: Representative for data flow patterns, breaking down stepwise processing into a

series of processing-activities ("Filter") and associated data transport/buffering capabilities ("Pipes").

• Microservices split application into separate executable that communicate via network

• Dependency Injection as a possible solution for the Dependency-Inversion-Principle

Software architects can explain several of the following patterns, explain their relevance for concrete

systems, and provide examples. (R3)

• Blackboard: handle problems that cannot be solved by deterministic algorithms but require diverse

knowledge

• Broker: responsible for coordinating communication between provider(s) and consumer(s), applied in

distributed systems. Responsible for forwarding requests and/or transmitting results and exceptions

• Combinator (synonym: closure of operations), for domain object of type T, look for operations with

both input and output type T. See [Yorgey 2012]

• CQRS (Command-Query-Responsibility-Segregation): Separates read- from write concerns in

information systems. Requires some context on database-/persistence technology to understand the

different properties and requirements of "read" versus "write" operations

• Event-Sourcing: handle operations on data by a sequence of events, each of which is recorded in an

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 15

https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Multitier_architecture

append-only store

• Interpreter: represent domain object or DSL as syntax, provide function implementing a semantic

interpretation of domain object separately from domain object itself

• Integration and messaging patterns (e.g. from Hohpe+2004])

• The MVC, MVVM, MV-Update, PAC family of patterns, separating external representation (view) from

data, services and their coordination

• Interfacing-patterns like Adapter, Facade, Proxy. Such patterns help in integration of subsystems

and/or simplification of dependencies. Architects should know that these patterns can be used

independent of (object) technology

◦ Adapter: decouple consumer and provider - where the interface of the provider does not exactly

match that of the consumer. The Adapter decouples one party from interface-changes in the

other

◦ Facade: simplifies usage of a provider for consumer(s) by providing simplified access

◦ Proxy: An intermediate between consumer and provider, enabling temporal decoupling, caching

of results, controlling access to the provider etc.

• Observer: a producer of values over time notifies a central switchboards where consumers can

register to be notified of them

• Plug-In: extend the behaviour of a component

• Ports&Adapters (syn. Onion-Architecture, Hexagonal-Architecture): concentrate domain logic in the

center of the system, have connections to the outside world (database, UI) at the edges, dependencies

only outside-in, never inside-out

• Remote Procedure Call: make a function or algorithm execute in a different address space

• SOA: Service-Oriented Architecture. An approach to provide abstract services rather than concrete

implementations to users of the system to promote reuse of services across departments and

between companies

• Template and Strategy: make specific algorithms flexible by encapsulating them

• Visitor: separate data-structure traversal from specific processing

Software architects know essential sources for architectural patterns, such as POSA (e.g. [Buschmann+

1996]) and PoEAA ([Fowler 2002]) (for information systems) (R3).

LG 2-6: Explain and use design principles (R1-R3)

Software architects are able to explain what design principles are. They can outline their general objectives

and applications with regard to software architecture. (R2)

With relevance for the examination depending on the specific principle listed below, software architects

are able to:

• explain the design principles listed below and can illustrate them with examples

• explain how those principles are to be applied

• explain how the quality requirements determine which principles should be applied

• explain the impact of design principles on the implementation

• analyze source code and architecture designs to evaluate whether these design principles have been

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 16

applied or should be applied

Abstraction (R1)

• in the sense of a means for deriving useful generalizations

• as a design construct, where building blocks are dependent on the abstractions rather than depending

on implementations

• interfaces as abstractions

Modularization (R1-R3)

• information hiding and encapsulation (R1)

• separation of concerns - SoC (R1)

• loose, but functionally sufficient, coupling (R1) of building blocks, see LG 2-7

• high cohesion (R1)

• SOLID principles (R1-R3), which have, to a certain extent, relevance at the architectural level

◦ S: Single responsibility principle (R1) and its relation to SoC

◦ O: Open/closed principle (R1)

◦ L: Liskov substitution principle (R3) as a way to achieve consistency and conceptual integrity in

OO design

◦ I: Interface segregation principle (R2), including its relation to LG 2-9

◦ D: Dependency inversion principle (R1) by means of interfaces or similar abstractions

Conceptual integrity (R2)

• meaning uniformity (homogeneity, consistency) of solutions for similar problems (R2)

• as a means to achieve the principle of least surprise (R3)

Simplicity (R1-R2)

• as a means to reduce complexity (R1)

• as the driving factor behind KISS (R1) and YAGNI (R2)

Expect Errors (R1-R2)

• as a means to design for robust and resilient systems (R1)

• as a generalization of the robustness principle aka Postel’s law (R2)

LG 2-7: Manage dependencies between building blocks (R1)

Software architects understand dependencies and coupling between building blocks and can use them in

a targeted manner. They:

• know and understand different types of dependencies of building blocks (e.g. coupling via

use/delegation, messaging/events, composition, creation, inheritance, temporal coupling, coupling via

data, data types or hardware)

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 17

• understand how dependencies increase coupling

• can use such types of coupling in a targeted manner and can assess the consequences of such

dependencies

• know and can apply possibilities to reduce or eliminate coupling, for example:

◦ Patterns (see LG 2-5)

◦ Fundamental design principles (see LG 2-6)

◦ Externalization of dependencies, i.e. defining concrete dependencies at installation- or runtime,

for example by using Dependency Injection.

LG 2-8: Achieve quality requirements with appropriate approaches and techniques (R1)

Software architects understand and consider the considerable influence of quality requirements in

architecture and design decisions, e.g. for:

• efficiency, runtime performance

• availability

• maintainability, modifiability, extensibility, adaptability

They can:

• explain and apply solution options, Architectural Tactics, suitable practices as well as technical

possibilities to achieve important quality requirements of software systems (different for embedded

systems or information systems)

• identify and communicate possible trade-offs between such solutions and their associated risks

LG 2-9: Design and define interfaces (R1-R3)

Software architects know about the importance of interfaces. They are able to design or specify interfaces

between architectural building blocks as well as external interfaces between the system and elements

outside of the system.

They know:

• desired characteristics of interfaces and can use them in the design:

◦ easy to learn, easy to use, easy to extend

◦ hard to misuse

◦ functionally complete from the perspective of users or building blocks using them.

• the necessity to treat internal and external interfaces differently

• different approaches for implementing interfaces (R3):

◦ Resource-oriented approach (REST, Representational State Transfer)

◦ Service-oriented approach (see WS-*/SOAP-based web services.

References

[Bass+ 2012], [Fowler 2002], [Gharbi+2020], [Gamma+94], [Martin 2003], [Buschmann+ 1996],

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 18

[Buschmann+ 2007], [Starke 2020], [Lilienthal 2018]

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 19

3. Specification and communication of software architectures

Duration: 180 min. Exercises: 60 min.

Relevant terms

(Architectural) Views; structures; (technical) concepts; documentation; communication; description;

stakeholder-oriented, meta structures and templates for description and communication; system context;

building blocks; building-block view; runtime view; deployment view; node; channel; deployment artifacts;

mapping building blocks onto deployment artifacts; description of interfaces and design decisions; UML,

tools for documentation

Learning goals

LG 3-1: Explain and consider the quality of technical documentation (R1)

Software architects know the quality requirements of technical documentation and can consider and fulfil

those when documenting systems:

• understandability, correctness, efficiency, appropriateness, maintainability

• form, content, and level of detail tailored to the stakeholders

They know that only the target audiences can assess the understandability of technical documentation.

LG 3-2: Describe and communicate software architectures (R1,R3)

Software architects are able to:

• document and communicate architectures for corresponding stakeholders, thereby addressing

different target groups, e.g. management, development teams, QA, other software architects, and

possibly additional stakeholders

• consolidate and harmonise the style and content of contributions from different groups of authors

• know the benefits of template-based documentation

Software architects know that various properties of documentation depend on specifics of the system, its

requirements, risks, development process, organization or other factors.

These factors impact:

• whether written or verbal communication should be prioritized

• the amount and level of detail of documentation needed at each stage of development

• the documentation format

• the accessibility to the documentation

• formality of documentation (e.g. diagrams compliant to a meta model or simple drawings)

• formal reviews and sign-off processes for documentation

Software architects are aware of these factors and can adjust the documentation characteristics

according to the situation.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 20

LG 3-3: Explain and apply notations/models to describe software architecture (R2-R3)

Software architects know at least the following UML (see [UML]) diagrams to describe architectural views:

• class, package, component (all R2) and composite-structure diagrams (R3)

• deployment diagrams (R2)

• sequence and activity diagrams (R2)

• state machine diagrams (R3)

Software architects know alternative notations to UML diagrams, for example: (R3)

• Archimate, see [Archimate]

• for runtime views for example flow charts, numbered lists or business-process-modeling-notation

(BPMN).

LG 3-4: Explain and use architectural views (R1)

Software architects are able to use the following architectural views:

• context view

• building-block or component view (composition of software building blocks)

• run-time view (dynamic view, interaction between software building blocks at run-time, state

machines)

• deployment view (hardware and technical infrastructure as well as the mapping of software building

blocks onto the infrastructure)

LG 3-5: Explain and apply context view of systems (R1)

Software architects are able to:

• depict the context of systems, e.g. in the form of context diagrams with explanations

• represent external interfaces of systems in the context view

• differentiate business and technical context.

LG 3-6: Document and communicate cross-cutting concepts (R2)

Software architects are able to adequately document and communicate typical cross-cutting concepts

(synonym: principles, aspects), e. g., persistence, workflow management, UI, deployment/integration,

logging.

LG 3-7: Describe interfaces (R1)

Software architects are able to describe and specify both internal and external interfaces.

LG 3-8: Explain and document architectural decisions (R1-R2)

Software architects are able to:

• systematically take, justify, communicate, and document architectural decisions

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 21

• identify, communicate, and document interdependencies between design decisions

Software architects know about Architecture-Decision-Records (ADR, see [Nygard 2011]) and can apply

these to document decisions (R2).

LG 3-9: Use documentation as written communication (R2)

Software architects use documentation to support the design, implementation and further development

(also called maintenance or evolution) of systems.

LG 3-10: Know additional resources and tools for documentation (R3)

Software architects know:

• basics of several published frameworks for the description of software architectures, for example:

◦ ISO/IEEE-42010 (formerly 1471), see [ISO 42010]

◦ arc42, see [arc42]

◦ C4, see [Brown]

◦ FMC, see [FMC]

• ideas and examples of checklists for the creation, documentation, and testing of software

architectures

• possible tools for creating and maintaining architectural documentation

References

[arc42], [Archimate], [Bass+ 2012], [Brown], [Clements+ 2010], [FMC], [Gharbi+2020], [Nygard 2011], [Starke

2020], [UML], [Zörner 2015]

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 22

4. Software architecture and quality

Duration: 60 min. Exercises: 60 min.

Relevant terms

Quality; quality characteristics (also called quality attributes); DIN/ISO 25010; quality scenarios; quality

tree; trade-offs between quality characteristics; qualitative architecture assessment; metrics and

quantitative assessment

Learning goals

LG 4-1: Discuss quality models and quality characteristics (R1)

Software architects can explain:

• the concept of quality (based on DIN/ISO 25010, formerly 9126) and quality characteristics

• generic quality models (such as DIN/ISO 25010)

• correlations and trade-offs of quality characteristics, for example:

◦ configurability versus reliability

◦ memory requirements versus performance efficiency

◦ security versus usability

◦ runtime flexibility versus maintainability.

LG 4-2: Clarify quality requirements for software architectures (R1)

Software architects can:

• clarify and formulate specific quality requirements for the software to be developed and its

architectures, for example in the form of scenarios and quality trees

• explain and apply scenarios and quality trees.

LG 4-3: Qualitative analysis and assessment of software architectures (R2-R3)

Software Architects:

• know methodical approaches for the qualitative analysis and assessment of software architectures

(R2), for example, as specified by ATAM (R3);

• can qualitatively analyze and assess smaller systems (R2)

• know that the following sources of information can help in the qualitative analysis and assessment of

architectures (R2):

◦ quality requirements, e.g. in the form of quality trees and scenarios

◦ architecture documentation

◦ architecture and design models

◦ source code

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 23

◦ metrics

◦ other documentation of the system, such as requirements, operational or test documentation.

LG 4-4: Quantitative evaluation of software architectures (R2)

Software architects know approaches for the quantitative analysis and evaluation (measurement) of

software.

They know that:

• quantitative evaluation can help to identify critical parts within systems

• further information can be helpful for the evaluation of architectures, for example:

◦ requirements and architecture documentation

◦ source code and related metrics such as lines of code, (cyclomatic) complexity, inbound and

outbound dependencies

◦ known errors in source code, especially error clusters

◦ test cases and test results.

References

[Bass+ 2012], [Clements+ 2002], [Gharbi+2020], [Martin 2003], [Starke 2020]

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 24

5. Examples of software architectures

Duration: 90 min. Exercises: none

This section is not relevant for for the exam.

Learning goals

LG 5-1: Know the relation between requirements, constraints, and solutions (R3)

Software architects are expected to recognize and comprehend the correlation between requirements and

constraints, and the chosen solutions using at least one example.

LG 5-2: Know the rationale of a solution’s technical implementation (R3)

Software architects understand the technical realization (implementation, technical concepts, products

used, architectural decisions, solution strategies) of at least one solution.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 25

References

▪ [arc42] arc42, the open-source template for software architecture communication, online:

https://arc42.org. Maintained on https://github.com/arc42

▪ [Archimate] The ArchiMate® Enterprise Architecture Modeling Language, online:

https://www.opengroup.org/archimate-forum/archimate-overview

▪ [Bass+ 2012] Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practice. 3rd Edition,

Addison Wesley 2012.

▪ [Brown] Simon Brown: Brown, Simon: The C4 model for visualising software architecture.

https://c4model.com https://www.infoq.com/articles/C4-architecture-model.

▪ [Buschmann+ 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael

Stal: Pattern-Oriented Software Architecture (POSA): A System of Patterns. Wiley, 1996.

▪ [Buschmann+ 2007] Frank Buschmann, Kevlin Henney, Douglas C. Schmidt: Pattern-Oriented Software

Architecture (POSA): A Pattern Language for Distributed Computing, Wiley, 2007.

▪ [Clements+ 2002] Paul Clements, Rick Kazman, Mark Klein: Evaluating Software Architectures.

Methods and Case Studies. Addison Wesley, 2002.

▪ [Clements+ 2010] Paul Clements, Felix Bachmann, Len Bass, David Garlan, David, James Ivers, Reed

Little, Paulo Merson and Robert Nord. Documenting Software Architectures: Views and Beyond, 2nd

edition, Addison Wesley, 2010

▪ [Evans 2004] Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-

Wesley, 2004.

▪ [FMC] Siegfried Wendt: Fundamental Modeling Concepts, online: http://www.fmc-modeling.org/

▪ [Ford 2017] Neil Ford, Rebecca Parsons, Patrick Kua: Building Evolutionary Architectures: Support

Constant Change. OReilly 2017

▪ [Fowler 2002] Martin Fowler: Patterns of Enterprise Application Architecture. (PoEAA) Addison-

Wesley, 2002.

▪ [Gharbi+2020] Mahbouba Gharbi, Arne Koschel, Andreas Rausch, Gernot Starke: Basiswissen

Softwarearchitektur. 4. Auflage, dpunkt Verlag, Heidelberg 2020.

▪ [Geirhosk 2015] Matthias Geirhos. Entwurfsmuster: Das umfassende Handbuch (in German).

Rheinwerk Computing Verlag. 2015 ISBN: 9783836227629

▪ [Gamma+94] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley. 1994.

▪ [Goll 2014] Joachim Goll: Architektur- und Entwurfsmuster der Softwaretechnik: Mit lauffähigen

Beispielen in Java. Springer-Vieweg Verlag, 2. Auflage 2014.

▪ [Hofmeister et. al 1999] Christine Hofmeister, Robert Nord, Dilip Soni: Applied Software Architecture,

Addison-Wesley, 1999

▪ [ISO 42010] ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description,

online: http://www.iso-architecture.org/ieee-1471/

▪ [iSAQB References] Gernot Starke et. al. Annotated collection of Software Architecture References, for

Foundation and Advanced Level Curricula. Freely available https://leanpub.com/isaqbreferences.

▪ [Keeling 2017] Michael Keeling. Design It!: From Programmer to Software Architect. Pragmatic

Programmer. ISBN 978-1680502091.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 26

https://arc42.org
https://github.com/arc42
https://www.opengroup.org/archimate-forum/archimate-overview
https://c4model.com
https://www.infoq.com/articles/C4-architecture-model
http://www.fmc-modeling.org/
http://www.iso-architecture.org/ieee-1471/
https://leanpub.com/isaqbreferences

▪ [Lilienthal 2018] Carola Lilienthal: Langlebige Softwarearchitekuren. 2. Auflage, dpunkt Verlag 2018.

▪ [Lilienthal 2019] Carola Lilienthal: Sustainable Software Architecture: Analyze and Reduce Technical

Debt. dpunkt Verlag 2019.

▪ [Martin 2003] Robert Martin: Agile Software Development. Principles, Patterns, and Practices. Prentice

Hall, 2003.

▪ [Martin 2017] Robert Martin. Clean Architecture: A craftsman’s guide to software structure and

design. MITP,

▪ [Miller et. al] Heather Miller, Nat Dempkowski, James Larisch, Christopher Meiklejohn: Distributed

Programming (to appear, but content-complete) https://github.com/heathermiller/dist-prog-book.

▪ [Newman 2015] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly.

2015. ISBN 9781491950357.

▪ [Nygard 2011] Michael Nygard: Documenting Architecture Decision. https://cognitect.com/blog/

2011/11/15/documenting-architecture-decisions. See also https://adr.github.io/

▪ [Pethuru 2017] Raj Pethuru et. al: Architectural Patterns. Packt 2017.

▪ [Starke 2020] Gernot Starke: Effektive Softwarearchitekturen - Ein praktischer Leitfaden (in German).

9. Auflage, Carl Hanser Verlag 2020. Website: https://esabuch.de

▪ [Eilebrecht+2019] Karl Eilebrecht, Gernot Starke: Patterns kompakt: Entwurfsmuster für effektive

Software-Entwicklung (in German). 5th Edition Springer Verlag 2019.

▪ [UML] The UML reading room, collection of UML resources https://www.omg.org/technology/

readingroom/UML.htm. See also https://www.uml-diagrams.org/.

▪ [vanSteen+Tanenbaum] Andrew Tanenbaum, Maarten van Steen: Distributed Systems, Principles and

Paradigms. https://www.distributed-systems.net/.

▪ [Yorgey 2012] Brent A. Yorgey, Proceedings of the 2012 Haskell Symposium, September 2012

https://doi.org/10.1145/2364506.2364520

▪ [Zörner 2015] Stefan Zörner: Softwarearchitekturen dokumentieren und kommunizieren. 2. Auflage,

Carl Hanser Verlag 2015.

iSAQB curriculum for Foundation Level

© iSAQB e.V. 2021.1-EN-20220413 (valid from April 1, 2021) 27

https://github.com/heathermiller/dist-prog-book
https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://adr.github.io/
https://esabuch.de
https://www.omg.org/technology/readingroom/UML.htm
https://www.omg.org/technology/readingroom/UML.htm
https://www.uml-diagrams.org/
https://www.distributed-systems.net/
https://doi.org/10.1145/2364506.2364520

	Curriculum forCertified Professional forSoftware Architecture (CPSA)®: Foundation Level
	Table of Contents
	Legal Notice
	List of Learning Goals
	Introduction
	What does a Foundation Level training convey?
	Out of scope
	Prerequisites
	Structure, duration and teaching methods
	Learning goals and relevance for the examination
	Current version and public repository

	1. Basic concepts of software architecture
	Relevant terms
	Learning goals
	References

	2. Design and development of software architectures
	Relevant terms
	Learning goals
	References

	3. Specification and communication of software architectures
	Relevant terms
	Learning goals
	References

	4. Software architecture and quality
	Relevant terms
	Learning goals
	References

	5. Examples of software architectures
	Learning goals

	References

