
Curriculum for

Certified Professional for
Software Architecture (CPSA)®

Advanced Level

Module
IMPROVE

Evolution and Improvement of Software Architectures
Version 1.6.1-EN, 2. Jan 2020

Table of Contents

Introduction: General information about the iSAQB Advanced Level . 2

What does an Advanced Level Module convey?. 2

What qualifications do Advanced Level (CPSA-A) graduates gain?. 2

Requirements for the CPSA-A certification . 2

Basics . 3

What does the module “IMPROVE” convey? . 3

Curriculum structure and recommended durations. 3

Duration, didactics, and further details . 3

Prerequisites. 4

Structure of the curriculum . 4

Further information, terminology, translations . 5

1. Lesson 1: Foundations of Improvement and Evolution of Software Architecture. 6

1.1. Terms and concepts. 6

1.2. Learning goals. 6

2. Lesson 2: Analyse Current State . 8

2.1. Terms and concepts. 8

2.2. Learning goals. 8

3. Lesson 3: Estimate and Assess Problems and Solution Approaches . 10

3.1. Terms and concepts . 10

3.2. Learning goals. 10

4. Lesson 4: Long-Term Planning of Improvements . 11

4.1. Terms and concepts . 11

4.2. Learning goals. 11

5. Lesson 5: Typical Approaches to Improvement . 13

5.1. Terms and concepts . 13

5.2. Learning goals. 13

6. Lesson 6: Examples of Improvement . 15

6.1. Terms and concepts . 15

6.2. Learning goals. 15

References . 16

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) ii

© (Copyright), International Software Architecture Qualification Board e. V.

(iSAQB® e. V.) 2019

The curriculum may only be used subject to the following conditions:

1. You wish to obtain the CPSA Certified Professional for Software Architecture Advanced Level®

certificate. For the purpose of obtaining the certificate, it shall be permitted to use these text

documents and/or curricula by creating working copies for your own computer. If any other use of

documents and/or curricula is intended, for instance for their dissemination to third parties, for

advertising etc., please write to info@isaqb.org to enquire whether this is permitted. A separate

license agreement would then have to be entered into.

2. If you are a trainer or training provider, it shall be possible for you to use the documents and/or

curricula once you have obtained a usage license. Please address any enquiries to info@isaqb.org.

License agreements with comprehensive provisions for all aspects exist.

3. If you fall neither into category 1 nor category 2, but would like to use these documents and/or

curricula nonetheless, please also contact the iSAQB e. V. by writing to info@isaqb.org. You will then

be informed about the possibility of acquiring relevant licenses through existing license agreements,

allowing you to obtain your desired usage authorizations.

Important Notice

We stress that, as a matter of principle, this curriculum is protected by copyright. The

International Software Architecture Qualification Board e. V. (iSAQB® e. V.) has exclusive

entitlement to these copyrights.

The abbreviation "e. V." is part of the iSAQB’s official name and stands for "eingetragener Verein"

(registered association), which describes its status as a legal entity according to German law. For the

purpose of simplicity, iSAQB e. V. shall hereafter be referred to as iSAQB without the use of said

abbreviation.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 1

mailto:info@isaqb.org
mailto:info@isaqb.org
mailto:info@isaqb.org

Introduction: General information about the iSAQB Advanced Level

What does an Advanced Level Module convey?

• The iSAQB Advanced Level offers modular training in three competence areas with flexible pathways

through the programme. It acknowledges and supports individual strengths and focus points.

• The certification is based on a homework paper. Grading and oral examination will be carried out

through an expert designated by iSAQB.

What qualifications do Advanced Level (CPSA-A) graduates gain?

CPSA-A graduates are able to:

• design medium to large IT systems idependently and based on solid methodical foundations

• take technical and operational responsibility in IT systems with medium to high criticality

• design and document measures to achieve quality requirements and support development teams

implementing those measures

• manage communication relevant to architecture in medium to large development teams

Requirements for the CPSA-A certification

• successful training and graduation of Certified Professional for Software Architecture, Foundation

Level® (CPSA-F)

• at least three years industrial, full-time experience in the IT sector; including collaboration on design

and development of at least two different IT systems

◦ exceptions may be granted (for example: contributions to open source projects)

• participation at iSAQB Advanced Level trainings worth at least 70 credit points from two different

areas of competence

◦ existing certifications (for example: Sun/Oracle Java architect, Microsoft CSA) may be credited

• passing the CPSA-A certification exam

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 2

Basics

What does the module “IMPROVE” convey?

Participants learn to methodically improve software systems and architectures, guided by economic and

technical goals. The trainings impart the systematic separation of problem and solution, the elaboration of

short-, mid- and long-term solution strategies as well as their alignment with business goals and

measures.

In addition, the IMPROVE curriculum teaches typical approaches of improvement, e. g., restructuring and

refactoring, improving analysability, process improvement, improvement of technical infrastructure,

improvement of quality attributes, etc.

Curriculum structure and recommended durations

In particular, examples and exercises are left unspecified in this curriculum.

Content Recommended minimum duration (minutes)

1. Foundations 120

2. Analysis of current situation 210

3. Estimation of problems and solution

approaches

90

4. Long term improvement planning 120

5. Typical improvement approaches 360

6. Improvement examples 180

Sum 1080 (18h)

Durations

Duration, didactics, and further details

The durations mentioned below are recommendations. A course for the IMPROVE should last at least 3

days. Provides may vary length, didactics, type and structure of exercises, and structure of the course.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 3

Licensed courses for IMPROVE contribute the following credit points to the Advanced Level graduation:

Methodical Competence: 20 Points

Technical Competence: 10 Points

Communicative Competence: 0 Points

Prerequisites

Participants should have the following knowledge and/or experience:

• Hands-on experience in design and development of small to medium size software systems.

• Some hands-on experience in maintenance and evolution of a software system.

• Some hands-on experience with the handling of source code of medium to large scale systems, in

particular analysis, assessment, quality check, refactoring, and applying of metrics.

Furthermore, the following will be useful for understanding certain concepts:

• Knowledge and hands-on experience with refactoring (see e. g., [Fowler+99])

• Knowledge or some hands-on experience with review and evaluation of software:

◦ Basic knowledge about software metrics, such as metrics to measure coupling, cohesion,

dependency and complexity.

◦ Basic knowledge of software run time analysis such as profiling, tracing, log analysis and data

analysis.

◦ Basic knowledge and some experience with the estimation of development efforts.

• Some hands-on experience with requirements engineering as well as contact with various

stakeholders in development projects.

• Some hands-on experience with analysis of development processes.

Structure of the curriculum

The sections of the curriculum are described according to the following structure:

• Terms and concepts: essential core terms of the topic

• Teaching/Exercise Time: Specifies the teaching and exercise time that at least has to be spent on this

topic or its exercise in an accredited course.

• Learning goals: Describes the contents to be taught, including their key terms and concepts.

Learning goals also outline the knowledge and capabilities to gain in appropriate trainings. They are

distinguished into the following categories of relevance:

• (R1) What should the participants be capable of? After completion of the training the participants

should be able to autonomously put these contents into practice. These contents will be taught within

trainings and should also be deepened through exercises and discussions.

• (R2) What should the participants understand? These contents will be taught within trainings and may

be supported by exercises and discussions.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 4

• (R3) What should the participants know? These contents (terms, concepts, methods, practices or

similar) may enhance the understanding or motivate the topic. They will be covered in trainings if

required but not necessarily in much detail.

If required, the learning goals include references to further literature, standards or other sources.

Further information, terminology, translations

To the extent necessary for understanding the curriculum, we have added definitions of technical terms to

the iSAQB glossary and complemented them by references to (translated) literature.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 5

https://github.com/isaqb-org/glossary

1. Lesson 1: Foundations of Improvement and Evolution of Software
Architecture

Lesson duration: 120 min Exercises: 0 min

1.1. Terms and concepts

• Software architecture: structure, building blocks/components, interfaces, cross-cutting concepts

• Change, evolution, maintenance, improvement of software

• Categories of problems and risks in software (technical debts)

• Core terms related to improvement and change of software

• Technical care.

1.2. Learning goals

LG 1-1: Know and explain reasons for software changes (R1)

• Extending and changing features

• Change in quality requirements and goals

• Changes in technical or business context (e. g., change in external interfaces)

• Bug fixing

• Changes in organisation (e. g., changes of legal conditions or requirements; organisational structure

of business units, development or operations)

• Reduce of costs or efforts, especially with respect to:

• Costs or efforts of development

• Costs or efforts of operations

• Costs of bug fixing and consequential damage

• Costs of involved processes

• Opportunity costs

• Intrinsic motivation of stakeholders, especially software developers and architects.

• Update of applied technology such as operating systems, middleware, libraries, frameworks, hardware

or similar.

LG 1-2: Know and explain typical categories of problems in software (R1)

• Conceptual weaknesses, e. g., violation of conceptual integrity, redundancy, use of inappropriate

technology, incorrect use of technology.

• Structural problems in data or data structures.

• Structural problems in source code, such as:

• Missing or inadequate modularisation,

• Tight coupling,

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 6

• High complexity,

• Low cohesion,

• Flaws in programming, e. g., non-idiomatic use of languages or tools.

• Runtime problems in systems, like instability, lack of robustness or reliability, insufficient performance

or extensive resource demands, insufficient scalability, insufficient transparency of system processes

• “Legacy” gathered by frequent changes of requirements made under time and/or cost pressure.

• Recognize and name different kinds of technical debts.

• Problems to achieve quality goals or requirements, e. g., insufficient changeability or maintainability,

low flexibility, insufficient security or lack of portability.

• Problems in development, operations or other involved processes (e. g., requirements management,

test/QA, configuration, deployment, monitoring/alerting).

LG 1-3: Know and explain core terms of evolution and change (R1)

Know core terms of evolution and change:

• Problem (issue),

• Solution approach (opportunity for improvement),

• Costs (of problems, solution approaches, measures),

• Root cause versus symptom,

• Risk.

LG 1-4: Know and explain possible approaches for changes (R2)

For example:

• Ad-hoc improvement, one-off improvement,

• Stepwise improvement (mid- to long-term),

• Improvement by newly developed system or system parts (rewrite),

• Purely structural improvements (refactoring),

• Conceptual/structural improvements (re-architecting, reengineering).

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 7

2. Lesson 2: Analyse Current State

Lesson duration: 210 min Exercises: 0 min

2.1. Terms and concepts

• current state analysis, strength/weaknesses analysis,

• Stakeholder,

• Problem, cause versus symptom,

• Solution approach.

2.2. Learning goals

LG 2-1: Know the basics of the analysis to distinguish “problem” from “solution” and being able to
apply it (R1)

• Distinguish “problem analysis” from “problem solution”

• Form m:n relation between problems and solution approaches

• Decomposition of complex problems

LG 2-2: Know typical practices and methods for current state analysis and being able to apply them
(R1)

Know typical practices for current state analysis and being able to choose the appropriate method in each

situation according to budget, time or the involved stakeholders. This includes approaches such as:

• Stakeholder analysis and interview,

• Contextual analysis,

• Qualitative analysis (e. g., ATAM), in particular, analysis of quality goals,

• Analysis of structural deviations between target and current architecture,

• Quantitative analysis methods and practices, such as:

• Code metrics (size metrics, coupling, complexity, cohesion),

• Organisational metrics, such as costs, time, and countable items. Example: error counts and failure

rates, development speed, cost per feature, cost per fixed bug, etc.,

• Runtime metrics, e. g., time and resource demands as well as tools to measure these metrics.

• Data analysis: examination of data structures and contents,

• Documentation analysis,

• Analysis of technical environment (runtime and operations: hardware, operations environment,

networks, operating systems involved and infrastructure software)

• Analysis of development processes (requirements engineering, design/implementation, test/QA and

handover to operations)

• Analysis of operation processes

• Analysis of further processes and tasks that may influence development problems and system

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 8

changes, e. g.,: management, budgeting, support, governance, outsourcing/offshoring, procurement.

LG 2-3: Being able to methodically document identified problems and risks (R1)

• Participant shall be able to initiate an adequate documentation of problems (issues) and risks that

have been identified by an improvement- and change process.

• Tools and examples for problem documentation.

LG 2-4: Being able to plan and execute stakeholder analysis and interviews (R1)

• Plan, perform, and document a stakeholder analysis to identify essential people involved, their roles,

and intents.

• Know methods to structure and execute stakeholder interviews.

• Being able to create preparatory questionnaires.

• React flexibly to new relevant information obtained during interviews; incorporate these in the

analysis.

LG 2-5: Being able to perform a contextual analysis (R1)

• Define and document contextual boundaries: demarcate systems with respect to their technically and

logically related neighbours, identify external interfaces.

• Identify connections between external interfaces and stakeholders and use this information for

problem analysis.

• Elaborate problems and risks of external interfaces (e. g., via interviews, analysis of known failures,

runtime analysis, protocol or log analysis, analysis of organisational dependencies, analysis of quality

attributes and/or service levels).

LG 2-6: Being able to perform code- and structural analysis (R1)

• Perform and document (static) analysis of existing source code and its structure. (For this purpose,

tools may be used in the training. However, these are not a prerequisite).

LG 2-7: Being able to plan and perform basic runtime analysis (R2)

• Plan and perform (dynamic) analysis of existing systems, e. g., with respect to runtime behaviour,

resource utilization, load response. (For this purpose, tools may be used in the training. However,

these are not a prerequisite).

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 9

3. Lesson 3: Estimate and Assess Problems and Solution Approaches

Lesson duration: 90 min Exercises: 0 min

3.1. Terms and concepts

• Effort, cost, estimate, observation/measurement, assumptions

• economic dimensions

◦ Investment, yield, cost, value

◦ Return-on-Invest (ROI)

◦ Break-Even,

◦ RTC and BTC costs

• Interval estimation, Law of large numbers.

3.2. Learning goals

LG 3-1: Know and explain economic dimensions (R1)

• Explain costs and value as linked concepts.

• Name and classify different kinds of economic dimensions, such as:

• Direct costs, education costs, capital expenditures (direct and indirect cost of investment), operating

expenditures, opportunity cost, and cost of delay

• Investment and operating expenses (OPEX), Run-the-Company (RTC) and Develop-the-Company (DTC)

• ROI, break-even, depreciation and amortisation

• One-time and reoccurring costs, known and estimated costs.

LG 3-2: Know and explain basic terms of evaluation and estimation (R2)

• Explain the terms “estimation“, “observation“ and “measurement“ and apply them to the evaluation of

problems and solution approaches.

• Be able to estimate efforts in intervals. Know different approaches for interval estimates:

• Confidence interval,

• Minimum/maximum interval,

• Worst-/Average-/Best-Case estimation.

• Be able to assess and communicate the probability of the correctness of the estimation.

• Identify and name items to be estimated, e. g., hours of work.

• Identify parameters and influencing factors of estimations

• explicit assumption to be able to define estimation parameters in value ranges.

LG 3-3: Being able to estimate for problems and solution approaches (R1)

Apply estimation techniques to problems and solution approaches of IT systems and related processes.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 10

4. Lesson 4: Long-Term Planning of Improvements

Lesson duration: 120 min Exercises: 0 min

4.1. Terms and concepts

• Explicit representation (documentation) of evaluated problems and options for solutions.

• Grouping/clustering of solutions.

• Dependencies between problems and solutions.

• Potential m:n relation between problems and solution approaches.

• Synergies,

• Iterative-incremental approach.

• Development and communication of long-term solution strategies.

4.2. Learning goals

LG 4-1: Explicitly represent evaluated problems and solution approaches (R1)

Know technical or manual approaches to explicitly represent evaluated problems and solution approaches

and choose the appropriate for the given situation. Examples:

• Issue tracker,

• Tables,

• Data bases.

LG 4-2: Know and argue typical methods for improvement (R2)

Know typical methods for improvement, e. g.,:

• Long-term continuous improvement,

• Improving releases,

• Application strangling,

• Encapsulation of (localised) problems or risks in black-boxes,

• Extraction of business aspects, separation of technical aspects,

• Incremental replacement of problematic parts of system,

• Rewrite,

• Outsourcing,

• Business process reengineering.

Being able to communicate and argue approaches to long-term improvement to different stakeholders.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 11

LG 4-3: Assess the impact of “rewrite“ versus “continuous improvement“ (R2)

Being able to assess and argue the impact (risks, benefits) of a “complete rewrite” approach in contrast to

a “continuous improvement“ approach in each situation.

Understand that lack of details knowledge (e. g., requirements, details of algorithms and processes, quality

scenarios, implementation details, technical dependencies, operational processes) often leads to the

“rewrite” approach looking simpler as it would be when considering all the details.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 12

5. Lesson 5: Typical Approaches to Improvement

Lesson duration: 360 min Exercises: 0 min

5.1. Terms and concepts

• Structural vs. conceptual improvement

• Process and product improvement

• Improvement of code, data, cross-cutting concepts, processes, infrastructure,

analysability/monitoring

• Reduction of technical debts

• Ways to improve source code

◦ Refactoring

◦ Reduction of complexity and coupling

◦ Improve readability and comprehensibility

• Process automation to lower risk of changes, in particular, automated tests.

Note 1: The following learning goals should only give indications for typical improvements. In concrete

systems or scenarios other approaches may be necessary that cannot be anticipated in this curriculum.

Note 2: In this chapter trainings should present detailed technical approaches for possible improvements.

5.2. Learning goals

LG 5-1: Know potential approaches to optimise development processes (R3)

• Decentralisation vs. centralisation of development processes.

• Employment of iterative processes to reduce risks.

• Reduce idle times and buffers to accelerate development processes.

• Identify critical parts (people, organisational units) in development processes, and possible ways to

relieve them.

LG 5-2: Know and being able to apply improvement measures for source code (R1)

• Know and being able to apply typical technology/programming language specific refactorings

(semantics preserving simplification measures in source code). Trainings should conduct exercises if

required.

• Better use of technology or use better technology (change of technology).

• Explain the connection between technical debts and refactoring.

• Know and be able to apply measures and patterns to reduce coupling at source code level.

• Know and be able to apply measures and patterns to make source code more comprehensible, e. g.,

Clean-Code principles.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 13

LG 5-3: Know and be able to apply possible approaches for automated testing to reduce risks of
change (R2)

• Know and being able to autonomously apply automated tests (unit-, integration-, acceptance-,

regression-tests) as a means of early detection of defects in change or improvement projects.

(Trainings should provide exercises if required.)

• Being able to autonomously identify adequate locations/interfaces/components where the

introduction of automated tests will be suitable for specific change scenarios.

LG 5-4: Know automation as a means of reducing risks of changes (R2)

Know further methodical and technical means of automations that may help to reduce risk and required

efforts of changes, such as:

• Continuous integration,

• Continuous delivery,

• Model driven development/generative development.

LG 5-5: Know relevant architectural-/design- or implementation patterns to reduce system-internal
coupling (R1)

• Know and be able to apply typical patterns to reduce coupling (e. g., modularisation/component

building, decoupling via interfaces, dependency injection, encapsulation, adapter, wrapper, gateway,

decoupling of control flow with asynchronous invocation).

• Understand the impact of typical patterns (possibly by using appropriate tools).

LG 5-6: Know technology specific options to improve the runtime behaviour of systems (R1)

Know and be able to apply technology specific patterns and practices to improve runtime properties

(specific choices are at the training provider’s discretion).

LG 5-7: Know options to improve operation processes (R2)

(Possibly technology specific) patterns and practices to improve system operations (specific choices are

at the training provider’s discretion).

LG 5-8: Know options to improve the documentation or the documentation processes (R2)

Know and be able to apply basic options for systematic improvement of technical documentation, such as:

• Compliance with established document structures (e. g., templates)

• Targeted reduction of documentation volume through abstraction or focussing on essential topics.

• Top-down communication,

• Separation of structural (specific) and conceptual (overarching) contents.

• Modularisation of documentation.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 14

6. Lesson 6: Examples of Improvement

Lesson duration: 180 min Exercises: 0 min

This section is not examinable.

6.1. Terms and concepts

In every licensed training session, at least one example for IMPROVE must be presented.

Type and structure of the examples presented may depend on the training and participants' interests. The

are not prescribed by iSAQB.

6.2. Learning goals

LG 6-1: Know and understand examples of problems/risks in IT systems (R2)

• Participants should be able to identify and understand the problems and risks of at least one example

of a mid- or large-size IT system. Therefore, the trainings should at least describe the system’s main

functional and non-functional requirements, quality goals, usage and change scenarios, essential

implementation structures as well as important cross-cutting concepts.

LG 6-2: Know and understand the evaluation of problems/risks (R2)

• Participants should be able to understand the evaluation of problems or solution approaches in a

given example.

LG 6-3: Know medium- to long term planning of an improvement project (R3)

• Participants should know and be able to understand the (short-, mid- and/or longterm) planning of an

improvement project in a given example.

LG 6-4: Know and understand improvement measures of a real-life project (R2)

• Participants should know and be able to understand possible or implemented improvement measures

in a given example.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 15

References

This section contains references that are cited in the curriculum.

A

[[[aim42+2017]]] Architecture Improvement Method – Open-Source collection of practices and patterns to

support software evolution, modernization, maintenance, migration and improvement of software

systems. http://aim42.org as well as http://aim42.github.io

B

[[[Bass+2012]]] Bass, L., Clements, P. und Kazman, R.: Software Architecture in Practice. 3rd Edition,

Addison-Wesley, 2012

[[[Bommer+2008]]] Softwarewartung: Grundlagen, Management und Wartungstechniken. dpunkt.verlag,

2008.

C

[[[Clements+2001]]] Paul Clements, Rick Kazman, Mark Klein: Evaluating Software Architectures Methods

and Case Studies. Addison-Wesley, 2001.

F

[[[Feathers+2007]]] Working Effectively with Legacy Code. Prentice Hall, 2007.

[[[Fowler+1999]]] Martin Fowler, Kent Beck: Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

L

[[[Lippert+2007]]] Martin Lippert, Stefan Roock: Refactoring in Large Software Projects: Performing

Complex Restructurings Successfully. Wiley, 2007.

[[[Lilienthal 2016]]] Carola Lilienthal: Langlebige Softwarearchitekturen, Technische Schulden analysieren,

begrenzen und abbauen. Dpunkt.verlag, 2016.

M

[[[McConnell+2006]]] Steve McConnell: Software Estimation: Demystifying the Black Art. Microsoft Press,

2006.

[[[Murer+2010]]] Stephan Murer, Bruno Bonati: Managed Evolution: A Strategy for Very Large Information

Systems. Springer, 2010.

iSAQB curriculum for Advanced Level: IMPROVE

© iSAQB e.V. Version 1.6.1-EN (2. Jan 2020) 16

http://aim42.org/
http://aim42.github.io/

	Curriculum for Certified Professional for Software Architecture (CPSA)® Advanced Level: Module IMPROVE Evolution and Improvement of Software Architectures
	Table of Contents
	Introduction: General information about the iSAQB Advanced Level
	What does an Advanced Level Module convey?
	What qualifications do Advanced Level (CPSA-A) graduates gain?
	Requirements for the CPSA-A certification

	Basics
	What does the module “IMPROVE” convey?
	Curriculum structure and recommended durations
	Duration, didactics, and further details
	Prerequisites
	Structure of the curriculum
	Further information, terminology, translations

	1. Lesson 1: Foundations of Improvement and Evolution of Software Architecture
	1.1. Terms and concepts
	1.2. Learning goals

	2. Lesson 2: Analyse Current State
	2.1. Terms and concepts
	2.2. Learning goals

	3. Lesson 3: Estimate and Assess Problems and Solution Approaches
	3.1. Terms and concepts
	3.2. Learning goals

	4. Lesson 4: Long-Term Planning of Improvements
	4.1. Terms and concepts
	4.2. Learning goals

	5. Lesson 5: Typical Approaches to Improvement
	5.1. Terms and concepts
	5.2. Learning goals

	6. Lesson 6: Examples of Improvement
	6.1. Terms and concepts
	6.2. Learning goals

	References

